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and fills the region 0 (c*) \ s2 (co) for c* > c, . 
The trajectory. leaving an arbitrary point (20, v0), after a finite segment of time 

enters into the band -6 B Y % b, i.e. it turns out to be in some region B (C). In fact, 
for the sake of definiteness let Ya > b. Since G (z) + a+ - ~0 for z - 00, the ewe 

I- WrblO + f3 (50) + a$o; a~) for t > 20 intersect5 the straight line Y = 6 Then 
by virtue of (3) and’ the inequality b > E 2. the trajectory also intersects this line and 
enters into the band --b < Y Q b. 

From inequalities (8), (lo), (11) and 1 Es (t) I Q E,, it follows that the trajectories 

cross the curves (D (c) from the outside into the region B (C) for any C > C,. Conse- 

quently, in the region Q (C*) \ Q (Cd (C* > Cd the quantity C decreases monotoni- 

cally along the trajectory. If the existence of the limit C+> C, is assumed here, then 
this will indicate that the trajectory winds up from the outside onto the curve 0~ (C+). 

In particular, in the region 2 > a, -Es0 > y > -b the function z’ I(*, becomes arbi- 
trarily close to zero. Howevet, -this is in contradiction to the first equation of system 

(2) and the inequality’ I Es It) ] Q Eta. 
Thus, in the course of time all trajectories of system (2) get into the region n (C,) 

and subsequently remain in it. This completes the proof of the theorem. 

Note : Ulider the conditions of the theorem the requirement I g (4 I 6 go < O3 is 

essential. Thus, for the equation 
5” + sign z’ + 5 = sin t 

the statement of the theorem is not valid [33. 
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Conditions are presented for the existence of bifurcation of a singular point of 
the type of a “fused focus". The fusing is accomplished with ordinary tla&mo- 

ries mdu the assumption that the general integrals are known for both systems 
forming the “fused system”. 

In the approximation of analytical characterirtics in the equations of motion 
of dynamic systems by piccewise linear or relay functions on the lines of fusing, 
sin@ar points can arise which are fused from ordinary or singular trajectories 
of systems tn be fused. When the parameters of the system change, analogies 
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arise here to bifurcations which are known for systems with analytical tight-hand 
sides (birth of limit cycles from the fused focus, from the fused loop of the sep- 
aratrix etc. ). 

Let the line of fusing be z = 0 and let the following system be defined in the ZY - 
plane g = Pi (5, Y), -$- = Qi (z, y) (i = i,2) (1, 

i-i for z<O, i=2 for x>O 
It is not difficult to show that the location of the trajectories in the vicinity of the origin 
of coordinates is as in Fig. l(9, (O,(J) > 0) or Fig. 2 (QI (0, 0) < 0), and that the origin 
of coordinates is a singular point of the type of a fused focus if the fulfillment of the 
following conditions is required 

p, (0, 0) = PO (0, 0) = 0 

Conditions for which the fused focus is stable or unstable will be obtained later. Let 

Fl(5, Y) = Cl (2 < 01, Fz (z, y) = cz (z > 0) 

be the general integrals of the system to be fused on the straight line z = 6, Point 
transformation of the half-line y > 0 into itself, carried out on trajectories of system 
(1) (Fig. 31, is given in a parametric form (U is the parameter) by correspondence fun- 
ctions F, (6. at) = F, (0, n), Fl (0, U?) = F* (0, n) 3) 

Let us examine some properties of functions given by the following equation: 

F (0) = F (u) (4) 

1. The graph of the function deflned by Eq. (4) is symmetric with respect to the 
bisectrix u = u and coincides with it if the function is monotonic. 

2. If u = uo is the extremum point of the function 1, (u), then the point (~0, I(~) is 
a double singular point of the function defined by Eq. (4). The graph of this function in 
the vicinity of the point (uO, uO) consists of two branches, one of which coincides with 
the bisectrix u = u, the other represents a decreasing function v = cp (u), which is sym- 
metric with respect to the bisectrix u = U. 

These two properties are geometrically obvious and easy to prove. 
3. If the function F (u) in the point u = us has derivatives to the order including 

(n + 1) ,and if F’ (uO) = 0 and F” (ug) # 0, then the function v = cp (u) in the point 
u = u0 has derivatives to the order including A .These derivatives can be computed 
through the usual application of the rules of analysis. Expressions are presented here for 
the first four derivatives 

Ip’ (Ml) = - 1, cp” (UO) = - 2 F”(uo) 
-n 3 F (uo) ’ 

(5) 
3 

$4) 
Ft5) (m) 

(UrJ) = - 5 
F”‘(m) 

0” 0.4 + 3 ;G [cp” (uo)]’ + 6 [rp” (uo)ls 

Note. It can be shown that derivatives of uneven order of the function u = Q (u) 
are expressed through derivatives of this function of preceding orders. Therefore the 
first nonzero derivative must be of even order. For proof it is sufficient to turn the axes 
by the angle a = n/4 and take advantage of the fact that uneven order derivatives of 
an even function become zero at the origin of coordinates. 
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4. If two functions v = ‘pr (u) and u = ‘PG (u), which are defined by equations F, (v) = 
= F, @) and 8’s (CJ) = 8’s (re) satisfy the conditions formulated under properry 3, then 
for their difference I {u} the foxing st#emenrs are valid: 

a) The function a W in the point u f I( a has a zero of even multtplicity (this follows 
from the Note to property 3). 

b) The functfon s (u) has an uneven number of zeros, and the number of xeros less 
than ~6 is equal to the number of xeros greater than uo- This follows from the symm - 
etryofcurves u=lpp,(u) and u= ‘pt fu) with respect to the straight line u = u. 

Fig, 1. Fig. 2. Fig, 3. 

Let us now return to correspondence functions (3). If the additional assumption is made 
that Ff” (0, 0) # 0 (i = i, 2), then all properties enumerated above are true for corresp- 
ondence functions. In this connection u,, = 0, and graphs of correspondence curves v.7 
= ‘~1 (u) and v = (pe (u), which are defined by Eqs. (3). are the parts of curves Iocated 
above the straight line u fp n, because in Fig. 3 it is assumed that Y < 6. 

Let us examine the diikence of correspondence functions 
z (u) = %W- % fu) 

The xeros of functions z (u), excluding the point 1~ = 0, correspond to limit cycles 
of the fissed system while the point u = 0 corresponds to the singular point of the type 
of a fused focus. In this connection, apparently. it is necessary to examine the ‘zeros 
only on the positive or only on the negative half-axes u (in our case according to Fig. 3 
only on the negative half-axis u). The expansion of function z (u) in powers of u has 
the following form by virtue of statement (8) of property 4: 

z (u! =eskusk+._.. (6) 

The sign of the coefficient ask together with the sign of the quantity Qi (0, 0) dew- 
mines the stability or the instability of the fused focus. If &sk and Q1 (0, Ot have differ- 
ent signs, the fused focus is stable. If the signs are the same, the fused focus is unstable. 
CoefficSents in the expansion (6) play the role of Liapunov focal quantities for a fused 
system and determine the behavior of the trajectory of the fused system in the vicinity 
of the singular point. Let us assume that coefficients of the expansion (6) and their 
derivatives are ~~~~~~y dependent on parameter k. For some value of parameter 
L = Ic, let the oondition 04 (%a) # u be valid. Then there exists such au interval of 

variation of parameter A, containing the point i\. - &I, that for all values of A from 
this interval the inequality a, (h,) > + > 0 is satisfied. 3ut in this case a neighborhood 
of the point a = o exists such that in this neighborhood the function z (ii) retains its 
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sign for all values of J. from the above mentioned interval. In analogy to usual defini- 
tions we say that the singular point of a fused system is a singular point of the simple 

fused focus type. 

Let now Qi (0,O) > 0, a, (A,) = u (and consequently as (h,) = 0)) and a4 (&) > 0. We 
assume for the sake of definiteness q’ (&) < 0. Then the following statements are valid: 

1. It is possible to find such values e > 0 and h, < h, that for all u from the inte- 

rval (--e, 0) and for all k from the interval (A,, h,) the function z (11) is positive, 

2. It is possible to find such values E > 0 and h, > b, that for all h from the interval 

(A,, b) the function t ku) in the interval t -6 0) has only one zero u = u1 (z (u) > u 

in the interval (-e, ur), z (u) < 0 in the interval (ur, 0)). 

It follows from these statements that on the phase plane q of the fused system the 

following changes take place, when the parameter 3, increases: For values L < AO and 

sufficiently close to ho the point (0, 0) is a singular point of the type of a simple unst- 

able fused focus. For h - ho the point (0,~) becomes a composite fused focus (unstable). 

For A > ho the composite fused focus becomes a simple stable fused focus surrounded by 
an unstable limit cycle. For the opposite change of parameter the limit cycle contracts 

towards the singular point, while the focus becomes unstable again. For other assumpt- 
ions with respect to signs of a, (L,,) and q’ (ho) the following cases are possible: 

Qi (0, 0) > 0, cr, (li,) = 0, a4 (A,) > 0, R’ (ho) > 0 

As 1 increases, the unstable limit cycle contracts towards the stable fused focus, 

QI (0, 0) >O, a, (ho) = 0, a4 (ho) < 0, a2' GO) >O 

As 3, increases, a stable limit cycle is generated from the stable composite focus 

QI (0, 0) >O, a, VW) = 0, a, (ho) < 0, %' (ho) < 0 
As h increases, the stable limit cycle contracts towards the unstabie fused focus. 

These conclusions are analogous to those which were obtained for dynamic systems 
with analytical right sides [ 11. 

In the general case 

a, (ho) = a4 (h,) = . . . alk (ho) = 0, a11;+2 (A,) # 0 

with appropriate inaoduction of the parameter, k and not more than k limit cycles 
can generate. 

Example. Let us examine the equation 123 

dP 2p(h-uP-sincp) 
-= 
dcp p-COSqJ (7) 

with the following approximations: 

-i 
sin cp Y 

1 

\li’p --x<cp<O 
ii coscp-(L~ 2 o<Cp<.rl 

Changing to variables y = p - 1, z = cp, we obtain the fused system 

dx 
-= 
dt 

y-XZPl, ~=2(yi1)().-1r$l--y)=Q1 

(--<z<O) 

dx 
dt = y + x = Pz, 

du 
i=2(?/tl)(h---l--~/)=Q~ dt 

(0 < x < n) 
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Conditions (2) are satisfied if 

Q1(0,0)=2(J.-!J+f1)>0, Qz (0,O) = 2 (a - IL - 1) < 0 (9) 

Under these conditions the point.(O,O) is a singular point of the fused focus type with 
motion of the representing point along the trajectory in the clockwise direction because 

Q1 (U, 0) > U . The general integrals of system (8) are 
V 

Here the upper signs correspond to 2 < 0, the lower signs to ‘t > 0 . The following 
notation is used: 

a=l-_lr* 1, 

From Eqs. (5) we obtain 

The first term in the expansion (6) will be 

Since Q1 (0, 0) > 0 (9), the point (0, 0) is a stable focus for X < 3p (a_ < 0) and an 

unstable focus for h > 3~. For k = 3y the point (0, 0) is a composite fused focus and 
following a, in the expansion (6). the coefficient % becomes zero. Using Eqs. (5). 

the calculation of a4 gives 

-1 
QI = q- (qQ4) (0) - (p*(4) (O)$ 5 p (I +z; ‘O (* _ 

It follows from this that when the stability of the singular point of system (8) changes, 
not more than one limit cycle can appear. When the parameter P grows beyond the bi- 
furcation value, which is determined by the condition h = 3p, one unstable limit cycle 

appears from the composite fused focus. 
A comparison of results of the investigation of bifurcation in the vicinity of the sing- 

ular point using the approximations (system (8)) and the initial system (7) (see [3]), 

shows that in this case the character of the possible bifurcations does not change in the 

vicinity of the singular point of the type of a focus. For other bifurcations in Eq. (7). 
which are connected with the appearance or disappearance of limit cycles (from cond- 

ensation of trajectories, or from the loop of the separatrix) the utilization of approxim- 

ations opens the possibility to obtain analytical conditions expressed through the para- 
meters of the system. These conditions cannot be’obtained for the initial analytical 

system. 
The author thanks N. N. Bautin for a number of valuable comments. 
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The propagation of a shock wave, the process of decay of the wave, and the 
motion of a type of simple wave in a two-way uniform symmetric traffic flow 
are studied on the bases of the hydrodynamic model postulated by J. Blick and 
G. Newell 113. An expression is obtained that connects the flow parameters at 
the front of the shock wave. The decay of the wave is investigated in the vici- 
nity of the head part by using expressions of the parameters in power series in a 
small quantity. Terms of the expansion are calculated that characterice the 
rate of change of the wave profile and its curvature at the wave front, 

1. Formulation of the problem. In the hydrodynamic theory of two-way 
uniform symmetric traffic flow two continuity equations 

are used to determine the form of dependence on the independent variables of the ave- 
rage speeds u and v and densities p and q of two homogeneous streams of traffic 
moving in opposite directions. The system of equations (1.1) is completed by the two 
empirical relations 

U’Vo- ap - Bq, v=%IfBP+~ (1.2) 

which represent the average speeds as functions of the densities of both streams. 
The region of physically acceptable solutions of the system (1. l), (1.2) is bounded; 

it can be represented as the union of the regions of hyperbolicity and ellipticity of the 
system of equations [l. 2j, The laws of motion and growth of initially small perturba- 
tions of the flow parameters and the magnitude of the time interval required for the 
transformation of a weak discontinuity into a shock wave are obtained in PJ, 

On the generated shock wave the follo.wing conditions are satisfied [ l] : 

PO Iu @o, 90) - 4 = p Iu @, q) - 4 (1.3) 
90 Iv (PO, Qo) - ml = 4 [u (PI !I) - WI 

Here the initial unperturbed state is denoted by subscript zero and lu,denotes the speed 
of the shock wave. Eliminating w we obtain the equation of the shock polar 

pu (P* 44 - pou (PO7 a4 = qv (Pl 9) - 5-v (pot QO) 
P--PO 9 - 4% (1.4) 

2. Motion of the shock wave. In equations (1.1). (1.2) we introduce dim- 
ensionless quantities according to the equations [l] 


